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Abstract

An efficient means of adaptive refinement within systems of

overset grids is presented. Problem domains are segregated

into near-body and off-body fields. Near-body fields are dis-

cretized via overlapping body-fitted grids that extend only a

short distance from body surfaces. Off-body fields are dis-

cretized via systems of overlapping uniform Cartesian grids of

varying levels of refinement. A novel off-body grid generation
and management scheme provides the mechanism for carrying

out adaptive refinement of off-body flow dynamics and solid

body motion. The scheme allows for very efficient use of

memory resources, and flow solvers and domain connectivity

routines that can exploit the structure inherent to uniform Car-

tesian grids.

INTRODUCTION

The need for accurate predictive ability of the aerody-
namics about geometrically complex bodies in steady

and unsteady environments is obvious. Experimental

investigative techniques, of course, continue to be

invaluable. However, there are many problems of practi-

cal importance that are not amenable to experimental

investigation without ignoring dynamic effects, or

invoking other simplifications. For example, aircraft

launch vehicle staging, conventional fixed-wing and

rotary-wing aircraft store separation, and pilot ejection

are examples of applications which cannot be fully stud-
ied experimentally due to several practical constraints.

Mature computational methods such as empirically-

modified_ three-dimensional panel codes and nonlinear

potential methods with ad hoc models are in common

use. However, these methods cannot be relied upon for

applications which may violate their inherent limita-

tions. Vortical wakes, viscous effects, moving shocks,

and aerodynamic interference between moving and sta-

tionary body components are particularly important for

many applications. These problems demand the most
advanced unsteady, three-dimensional Navier-Stokes

solvers available. The fact that such problems can be
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studied computationally using integrated Navier-Stokes
solvers and body-dynamics routines has been demon-

strated previously, t-4 However, the physical complexity

of such problems, such as the motion of flow structures

and/or body components, often makes it difficult to pro-

vide gridpoints in sufficient densities to ensure solution
accuracy.--

The methods presented in this paper have been moti-

vated by the need for adaptive refinement capability to

maintain solution accuracy for geometrically complex

problems, and by a desire to exploit the many advantages
offered by an approach that uses overlapping systems of

structured grids. The method of adaptive refinement pre-

sented in the following pages divides the physical domain

for a given problem into "near-body" and "off-body"

regions. The near-body portion of a domain is defined to

include the surface geometry of all bodies being consid-

ered and the volume of space extending a short distance
away from the respective surfaces. The construction of

near-body grids and associated intergrid connectivity is a
classical Chimera-style 6 decomposition of the near-body

domain. In the present case, it is assumed that near-body

grids provide grid point distributions of sufficient density

to accurately resolve the flow physics of interest (i.e.,

boundary-layers, vortices, etc.) without the need for
refinement. This is a reasonable constraint since near-

body grids are only required to extend a short distance
away from body surfaces. However, in the future, if the

need exists, a method of adaptive refinement within near-

body grids will also be developed.

The present method of adaptive refinement is designed

to provide resolution of off-body dynamics associated

with complex flow features and/or the motion of body

components. The off-body portion of the domain is

defined to encompass the near-body domain and extend

out to the far-field boundaries of the problem. The off-

body domain is filled with overlapping uniform Cartesian
grids of variable levels of refinement. All adaptive refine-

ment takes place within the off-body component grids.

Initially, regions of the off-body field are marked for
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grid systems. A simple example involving an airfoil and

background Cartesian grid is given in Figure 1. Any

point that lies within the body of a neighboring grid sys-

tem is not a valid field point. Accordingly, such points
are "blanked out" (see references9A°), and do not influ-

ence the solution. The hole boundary points in the back-

ground grid caused by the airfoil, and the airfoil outer

boundary points are indicated in Figure 1. In an overset

grid approach, definition of llow variables on such inter-

grid boundary points is accomplished by interpolation

from solutions in the overlap region of neighboring grid

systems. Generalized algorithms for carrying out this
task automatically have been developed. 9-14

In the methods presented in this paper, the near-body
(body-fitted) grids are of classical Chimera construction.

That is, bodies which are overset on portions of neigh-
boring grid components cause holes, and intergrid

boundary conditions must be provided for the resulting
intergrid boundaries. The only added constraint in the

present case is that near-body grids must resolve all flow
features of significance within their domain. The maxi-

mum spacing in the near-body grids should be represen-

tative of the highest level of refinement provided via

adaption within the off-body grids. Accordingly, the

present off-body method of adaption will preserve the
fidelity and accuracy of all flow dynamics that emanate

from near-body grid components.

Adaptive Refinement: Off-body Grid Generation

The primary difference between a classical Chimera

approach and what is being presented here as a means of

adaptive refinement relates to the way the background,

or off-body field, is being treated. In the former case, the

background grids are static. In the present method, the

background grids are dynamic and provide the entire
means of adaptive refinement.

The method of grid generation presented here is valid

for static and dynamic cases. Consider a set of near-body
grids in their initial static (mated) positions, or in their

dynamic positions at the start of an adaption step. We

seek a completely automatic and efficient means of grid
generation to discretize the off-body field. As an exam-

ple, consider the tiltrotor and wing configuration illus-

trated in Figure 2. Given a set of near-body grids, the

desired distance from the near-body boundaries to the

far-field outer boundary Dji, r, and an indication of the
existence and location of planes of symmetry, it is possi-

ble to efficiently generate a high quality system of off-

body grids. It is also useful if the near-body grid compo-

nents can be associated, or grouped, into distinguishable

bodies. For example, in the tiltrotor configuration shown

Figure 2. Tiltrotor configuration and selected surfaces

of the near-body grid system.

in Figure 2, the initial distribution of grid-points in the

off-body field can be done more efficiently if the near-

body grid components associated with the flapped-wing
are grouped into one body, those associated with the

nacelle assembly with a second body, and those for the

three rotor blades with a third body. Figure 3 shows

midspan locations of all level-I off-body grids that

result for different groupings of the near-body compo-
nent grids.

Parameters derived from the near-body grids

Geometric information contained in the near-body

grid definitions furnish the present off-body grid genera-

tor with several important parameters. The grid spacing

associated with the highest level of refinement S.,, r is
set equal to the average maximum spacing detected in

the near-body components. Of course, the near-body

spacing could be ignored and S,_,, r specified indepen-

dently. If this is done, Shear should be set to a value that
is less than or equal to the resolution available in the

near-body grids. Otherwise, solution accuracy cannot be

ensured via adaptive refinement. The near-body grids

also furnish coordinates to bounding box diagonals

which are used to construct the off-body grids. The diag-

onals that are needed include one for each body in the

problem (r'_.), and one which bounds the off-body outer

boundaries (RiQ. Here, the subscript i denotes the diag-
onal end-point (i = 1 is the left-front-bottom corner of

the bounding box, and i = 2 is the right-back-top cor-
ner) and j denotes the three Cartesian coordinate direc-

tions. The superscript n denotes the body to which r".
U

refers. For example, when three bodies are specified for

the tiltrotor example indicated in Figure 3c, the near-
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A ..... ). The spacings defined for each level of refinement

form a vector, S,. The m elements of S are ordered

from fine to coarse, Sl being equal to S,eor. The itera-
tion begins with an assumed amplification factor A, and
an assumed number of refinement levels M. If the

assumed values of A and M are used, the distance to the

off-body outer boundary L can be computed as

M

L = E (Omi,,Sl A(m- I)) (4)

m=l

If the computed value of L is less than Dfar - tol, then
the value of the spacing amplification factor A is

increased. If the value of L is greater than Df_r + tol,
then A is decreased. The final value of A is arbitrarily

limited between Ami n and Am,,x. If the value of A drops

below A_,i,,, the advantage of increasing grid refinement
from one level to the next is of marginal benefit. Con-

versely, if A grows to values larger than A,,,_x, the grid
spacing between successive levels of refinement become

intolerably large. Accordingly, if A drops below A,,in
the number of refinement levels M is decreased by one,

or, if A grows above A,m,x, M is increased by one.

Setting the state variable B

Initialization of the state variable B is accomplished
by checking the proximity of master-brick element cen-

ters to the near-body grids. For example, suppose we

have associated N bodies with the tiltrotor configuration
shown in Figure 2, and want to mark all master-brick
elements of refinement level m. For each of the N bod-

ies, coordinates of the body bounding boxes can be
defined with an added border associated with the m th

level of refinement

m

_.n = n (i-l))" Ij rlj- { E (OminSIA }

i=1

Ol

tl = Fn +
X2j 2j { E (OminSI A(t-I))}

i=1

(5)

and n can be substituted intoThe values of xjj x2j
Equation (3) to determine the volume of computational

space to visit in setting B. For all points ij visited in the
master brick grid, B will be set to level m if the respec-

tive element center is within the bounding box and has

not been previously set to a higher level of refinement.

This procedure is repeated for all bodies N and each of
the M levels of refinement.

During the flow simulation, error estimates are made

and a list of points that have been flagged for refine-
ment/coarsening is constructed. The coordinates of the

points in this list are used to access the master-brick grid
state variable using Equation (3) and to increment/dec-

rement the value of B accordingly.

Coalescence of Bricks

The master-brick grid state variable B provides a very
powerful tool for controlling off-body grid generation

and adaptive refinement. B provides the benefits of
structured data to an otherwise unstructured collection

of refinement-wise heterogeneous bricks. In order take

full advantage of the structure it is necessary to allow all
master-brick elements of like level of refinement to coa-

lesce into fewer bricks that occupy proportionately
larger portions of contiguous computational space. The

problem of coalescing neighboring bricks of like spac-
ing does not have a unique solution. The final coales-

cence solution is sensitive to the sequence of

coalescence. However, the issue of uniqueness is of lit-
tle or no concern here. We simply want to deal with as

few off-body grid components as necessary. Whether, or

not, the absolute minimum number of bricks (which

become off-body grid components) has been determined

is not relevant. It is only necessary to reduce the number

of bricks as much as is reasonably possible. Accord-

ingly, in the present work, coalescence of bricks in B

proceeds in sweeps of the three Cartesian coordinate

directions Xj. In the future, it is anticipated that this
approach will be implemented within parallel comput-

ing environments. Hence, the coalescence rules adopted

here can easily be modified to produce the number and

size of bricks subject to load balancing and system
resource availability constraints.

A simple example of coalescence sweeps in the Carte-

sian coordinate directions is given in Figure 4. A plane

of master-brick elements are shown in Figure 4a.
Assume that the unshaded elements are bricks that have

been assigned the same level of refinement. There are

174 such elements shown. Coalescence in the X_ direc-
tion results in the bricks shown in Figure 4b (46 bricks).

Then, taking the result of the X_ coalescence sweep,

bricks can be coalesced further in the X 2 direction to
produce the 25 bricks shown in Figure 4c. The structure

of the master-brick grid and state variable B allow coa-

lescence to be carried out very efficiently.

Generation of off-body component grids

Once B has been used to coalesce bricks of like level

of refinement, generation of the off-body component

grids is trivial. Each off-body component grid is a uni-
form Cartesian distribution of points and can be com-

pletely defined using the diagonal that bounds the

respective coalesced brick, and the brick refinement
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level.Inordertoprovidegridoverlap,generationofthe
off-bodycomponentgridsextend1gridintervaloutside
everyfaceof thecoalescedbrick.Figure5 shows
selectedsurfacesfromoft-bodycomponentgridsgener-
atedfora)awing/pylon/finned-storeconfigurationand
b) thetiltrolorconfigurationshownoriginallyinFigure
2.Thetotalcomputationalexpenserequiredtogenerate
thesegridsis minimal(i.e.,severalhundredthousand
points/secondonanSGIIndigo-2,R4400).Generation
of eachsetof off-bodygridsis fullyautomaticand
requiresonlythenear-bodygrids,Dj_,r, symmetry plane
identification, and body grouping information.

Adaptive Refinement: Error Estimation

The ultimate success of an adaptive refinement

scheme in maintaining solution accuracy rests to a great
degree on the algorithms ability to detect significant

errors in computed solutions. The subject of error esti-

mation has a large literature. However, the various

schemes can generally be categorized into two classes:

phenomenon detection and error estimation. In the

former class, schemes are developed to detect important

flow phenomenon (i.e., shocks, vortices, etc.) so that

points can be added to improve resolution of the phe-
nomenon. In the latter class, schemes are developed in

an attempt to measure numerical error so that points can
be added to reduce the error.

Phenomenon based error indicators tend to be prob-

lem sensitive. What works well for one flow phenome-

non may not work well for others, or the phenomenon

threshold-level that works well in one application may

be inappropriate for another. On the other hand, schemes

designed to estimate numerical error tend to be compu-
tationally more expensive and have been met with vary-

ing degrees of success. 15'16

In the present method a scheme has been implemented

to estimate the numerical error. This approach was

adopted in the hopes of achieving more generality and
robustness than would otherwise have been attainable.

The error at any point in a given component grid is
defined as

Eest = Q- Q, (6)

where Q is the dependent variable vector obtained via

solution of the equations of motion using an alh-order

flow solver. 0 is the dependent variable vector obtained

via interpolation from surrounding points in space using
an a th order interpolation scheme.

The formal accuracy of a numerical method is gener-

ally stated in terms of its Taylor error, Et. Before pro-

ceeding further with the present discussion, a definition

of numerical accuracy is given as a point of reference. A
partial derivative of the form _)t'j)'3._t' can be expressed

as the sum of the difference approximation to be

employed and E_.

..... FDE + . .+... (7)
OxI' _xc

The "order" of the difference approximation is there-

tore (t.-b), where b is the order of the partial deriva-

tive being approximated, and c is the order of the

leading partial derivative in Et. The difference scheme
is then said to be an a '_' order scheme, where a = c - b.

This definition holds for time, space, and mixed deriva-

tives regardless of how step-sizes have been arranged in

the expression of the scheme.

The flow solver that will be employed for testing the

present adaptive refinement method is forrnally 2rid

order in space and optionally 1st or 2nd order in time.
For unsteady applications it is proposed that the time-

step be chosen to be consistent with the near-body grids

and provide good temporal resolution of all flow fea-

tures being directly simulated. This being the case, spa-

tial error is used here to drive the adaptive refinement

process. In order to employ the error estimator given by

Equation (6), a 2rid order interpolation scheme must be

used to determine Q. It is easy to show that tri-linear

interpolation of the dependent flow variables is second

order accurate in space (b = 0 and _. = 2).

Even though Equation (6) provides a means to esti-

mate the numerical error in the computed solution,

alone it lacks criteria for error significance in terms of

grid refinement and coarsening. According to Equation
(7), the dimensionless error of a 2 ''t order flow solver

should be proportional to Ax _'. Therefore, the needed

threshold criteria for error significance is defined here to
be

Eref = Q_Ax 2 (8)

a_ 2

_,,o_ = _,ax (9)

where Ax is set equal to S,,,,,, r, Q_ is the flee-stream
dependent variable vector, and A is the grid refinement

amplification factor. Hence, if the estimated error at any

point in an off-body component grid is greater than a
2"d order error in the near-body grids, the master-brick

element associated with that point will be flagged for

refinement. Conversely, if the maximum error of all

points within a given master-brick element are at least
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Figure 7. Double tear-drop example (separation case).

Proximity based rules of adaption used alone to gener-

ate off-body grid components about near-body grid

components subsequent to separation of small tear-
drop.

cedure, but only combining them with the proximity

based rules of adaption is not sufficient. Figure 8 illus-

trates the deficiency of an adaption procedure that
ignores step 5 of Procedure 2. The illustration assumes

static body conditions (steady, or unsteady flow) with

adaption steps every "m" time-steps. Adaption is in

response to a developing wake behind the tear-drop pair.

The adaption sequence depicted in the figure shows that
without memory of the previous refinement level set-

tings, regions of off-body space can erroneously be
refined and coarsened in alternate adaption steps.

Procedure 2, step 5 constitutes a "memory" of the

master-brick grid state variable B. Memory of B settings

at the last adaption step combined with proximity rules
and error estimate results remedies the defect illustrated

in Figure 8. The general effect of step 5 is illustrated in

Figure 9 where proximity rules and B settings memory
(step 5) are used to adapt to the motion of the small tear-

drop. Rather than providing high resolution around the

separate near-body grid systems (as in Figures 6 and 7),

a swath of high resolution grids are generated along the

path traversed by the moving body. Off-body flow struc-
tures are often dragged, at least for some duration of

time, along the path taken by bodies moving relative to
other body components. This is true for the store separa-

tion-like problems suggested by the tear-drop example.

Since high resolution off-body grids also automatically

follow in the wake of moving bodies (due to step 5), the
role of error estimation will often be to decrease resolu-

tion in the wake of moving bodies when it is no longer

required.

t = (n+m)At
Flag points based on error estimates

Generate off body grids based on
proximity rules and error estimates

t = (n+2m)At

Flag points based on error estimates

Generate off body grids based on
proximity rules and error estimates

;_ ?_ Should be a level-I

off-body grid here...
____gend

[] Post adaption step level-I off-body grids

!/.'i Existing level-1 off-body grids

_ Points flagged for refinement

Figure 8. Error estimation and proximity rules alone

are insufficient to govern general solution adaption

method. The functionality of Procedure 2, step 5 is also
needed.

Adaptive Refinement: Solution Transfer Between Pre-

and Post-Adaption Off-Body
Grids

During the course of an unsteady solution process, the

off-body grid system will be required to adapt to the

evolving flow dynamics and motion of body compo-

nents. Of course, adaption will not be repeated at every
time-step, but rather periodically. In any case, whenever

it is necessary to repeat the adaption process, the prob-
lem of transferring an existing solution (pre-adaption

step) onto a new off-body grid system will exist. Figure

10 is a simple illustration of the solution transfer prob-
lem.

In the figure, the light colored bricks represent values
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A null response to the queries posed by Equation (10)

indicate that grids "m" and "n" intersect. The range of

grid "m" computational space that can be updated by

grid "n's" solution can then be determined by relations

similar to Equation (3), viz.

{ xm }
.m (xmin- I))

tU = int AAT' +1

(11)

......-x'19 }i m = int +l

2/ Axm
A j

where

n

Xmi,, = max (Xlmj,XI) )

X m X n
X,na_ = rain ( 2j, 2j )

For the N pre-adaption step off-body grids

Bounding-box coordinates of grid n define
volume of solution domain available for donation
of solution data to new grid components

For the M new off-body component grids

1 test coordinates of grid m with those
of grid n.

2 if volume m intersects volume n,

a) identify the grid m J,K,L space that is in
common with grid n

b) find a donor element in grid n for each
point in the J,K,L range identified for
grid m

c) interpolate Q from grid n to grid m

Procedure 3. Procedure for solution transfer between

pre- and post-adaption step off-body component grids.

Indices of the grid "n" element that bounds each

point in the grid "m" computational space range

defined by Equation (!1) is easily determined from

Equation (12). The expression that defines the relation-

ship between Q at point i_'and the values of Q associ-

ated with element i_' is given as Equation (13).

Definition of the I coefficients [C (_j) ] 1 depend on the

( fin Xn }

i n = int "_ - U)

J AX" + 1
J

(12)

where x"j = (¢ - 1) AXj" + X';)

ore=
where

- q l/ Ax7

.in ill

(tj - 1) AXT' + X U

,ll t? tl

(,j - t)ax i +X_j

(13)

C I = (l-_i ) (I-_2) (I-_3)

C 2 = _i(]-_2) (]-_3 )

c3 = _,_2(I-_3)

c 4= (l-_,)_2(_-_3)

c_ = (l-_,)(1-_z)_

C6 = _I (I-_2)_3

C 7 = _1_2_3

C8 = (1-_1)_2_3

(14)

particular interpolation scheme to be employed. Trilin-

ear interpolation results in the definitions of IC(_j) lt
(where / = 1, 2..... 8) given in Equation (14).

Interpolation of Q from element /j" to point i_' will be

exact whenever _,j = 0 for j = 1, 2, 3. This situation can
occur over entire grid components when grids "n" and
"m" are at the same level of refinement.

Adaptive Refinement: Domain Connectivity

The final adaption-step listed in Procedure 1 corre-

sponds to domain connectivity. In concept, the problem

of establishing domain connectivity among the near-

body/off-body overset grid discretizations suggested
here is the same as for conventional Chimera style over-

set grids. However, in terms of data preparation and
computational resource requirements, it is much more

efficient to employ the present approach. The approach

even ensures that optimal donor elements will always be
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potentialdonors.Procedure4, Step3 indicatesthree
classes.Class-Iincludesall intergridboundarypoints
thatoriginatefromanynear-bodygridcomponent(i.e.,
holefringeandouterboundarypoints).Class-2includes
all intergridboundarypointsthatoriginatefromlevel-I
off-bodygridcomponents(hole-fringeandouterbound-
arypoints).BothClass-1andClass-2intergridboundary
pointshavethepotentialforhavingnear-bodyandoff-
bodydonors.Hence,theneedforadistinction between

these two classes is not obvious. During the course of a

moving-body flow simulation, it is possible to use donor

elements found for Class-1 intergrid boundary points at
the previous time-step as a first guess for donor elements

at the current time-step. The resulting computational

advantage of such an approach can be significant. How-

ever, there is no correspondence in grid identification

number for off-body grid components from one adap-

tion step to the next. Therefore, a similar restart capabil-
ity does not exist for Class-2 points, hence, the need for
both classes. The third and final class identified in Pro-

cedure 4, Step 3 includes all intergrid boundary points

that originate from level-2 and higher off-body grid

components. Class-3 point donors can always be found

in off-body grid components and, therefore, never
require conventional search procedures.

Conventional donor search procedures are not dis-
cussed here, but are deferred to the literature. 914 The

"fast" donor identification procedure noted in Proce-

dure 4, Step 4 is trivial. If "m" denotes the off-body

grid component identity of an intergrid boundary point,

and "n" denotes the identity of the off-body grid com-

ponent who's rain/max box includes the intergrid

boundary point in question, Equations (12-14) can be

used directly to compute the corresponding donor ele-

ment and interpolation coefficients. An algorithm based
on Procedure 4 has been used to establish domain con-

nectivity for the near-body/off-body discretizations of

the tiltrotor geometry indicated in Figure 2, wing/pylon/

finned-store geometry indicated in Figure 5, and double

tear-drop geometry shown in Figure 6. Each case was

carried out on an SGI Indigo-2 (R4400). Donor connec-

tivity solutions were generated at an average rate of

2,950 IGBP/sec. These rates are comparable to those
realizable on a Cray Y-MP/C-90 using the most efficient

domain connectivity algorithm for conventional Chi-

mera-type discretizations. 4

SUMMARY

An efficient means of adaptive refinement within sys-

tems of overset grids has been presented. A novel off-

body grid generation scheme has been developed that is

very efficient and provides the mechanism for carrying

out adaptive refinement of off-body flow dynamics and
solid-body motion. The structure of off-body grids

results in very efficient use of memory resources and

facilitates the use of extremely efficient flow solvers and

domain connectivity routines. Since, off-body grid gen-

eration is completely automatic, the method translates

into substantial savings of human resources as well,

even for static body and steady-state problems.

The primary elements of the algorithm, including
error estimation, off-body grid generation, solution

transfer between pre- and post-adaption step off-body

grids, and domain connectivity have been developed

and tested on a limited set of test problems. The algo-

rithms still need to be integrated with a flow solver and

tested on a range of applications to demonstrate perfor-

mance and identify areas which need improvement.
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